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One in six men will be diagnosed with prostate cancer during 
their lifetime, accounting for over 28% of total cancer cases 
in the United States1. Most newly diagnosed prostate cancer 

cases represent low-risk disease with less than a 4% chance of death2. 
The use of currently available screening and diagnostic methods in 
prostate cancer has resulted in the significant over-diagnosis and 
over-treatment of patients with Gleason 6 prostate cancer, as well as 
in the under-treatment of more aggressive cancers2–4. Similarly, in 
the United States, approximately one in eight women will be diag-
nosed with breast cancer during their lifetime5. Of the breast cancer 
subtypes, ductal carcinoma in situ (DCIS) is recognized as a large, 
low-risk breast cancer in need of diagnostic methods that help iden-
tify women who require aggressive treatment4. The gold standard 
for prognosis is adverse pathology (formalin-fixed tissue histology) 
in surgical specimens6,7. Predicting surgical adverse-pathology fea-
tures with strong accuracy (>​80%)—currently not available in pros-
tate cancer and breast cancer treatment planning—would provide 
oncologists with important information necessary for precision 
medicine. Furthermore, the assessment of physiologically relevant 
biomarkers of an individual’s tumour aggressiveness to categorize 
low-risk or indolent disease versus aggressive high-risk disease 
could improve diagnostic risk assessment in prostate cancer and 
breast cancer, and provide clinically actionable performance met-
rics8–14. Phenotypic biomarkers can be used in cancer diagnosis and 
in risk stratification because of the inherent genetic heterogeneity of 
cancer15–17. Direct evaluation of the dynamic phenotypic behaviour 
of single, living tumour cells grown in a controlled microenviron-
ment could provide deeper insights into multiple and coordinated 

signalling pathways, and offer an improved risk stratification and 
diagnostic tool18,19. Previous attempts to analyse dynamic biomark-
ers from single cells derived from primary biopsy tissue have been 
limited by inherent difficulties in culturing primary tumour cells 
(particularly prostate cells). Hence, biomarkers for the prediction 
of cancer incidence and progression and of the risk of local growth, 
aggressiveness and metastasis have remained inaccessible.

Here, we describe a microfluidic-based high-content assay for 
the analysis (with single-cell resolution) of cell cultures derived 
from solid prostate tumour tissue or breast tumour tissue (Fig. 1). 
The assay uses live-cell phenotypic biomarkers—including protein 
localization, protein dynamics, protein modification state, cyto-
skeletal dynamics, membrane dynamics, cell morphology and cell 
motility—and leverages machine vision and machine learning to 
overcome the limitations of traditional, static, formalin-fixed histo-
chemical biomarker analysis and also genomic tests that measure a 
small number of selected genes19–23 from bulk and static formalin-
fixed tissue samples. The assay requires an extracellular-matrix for-
mulation (ECMf; ref.19 and Supplementary Methods) that enables 
rapid culture (<​72 h) of primary cancer cells and the measurement 
of previously inaccessible live-cell phenotypic biomarkers, as well as 
custom machine-vision software and machine-learning algorithms 
(Supplementary Methods) that quantify both live-cell and fixed-cell 
molecular and cellular phenotypic biomarkers from single cells to 
generate predictive scores via specific machine-learning algorithms 
for a given prediction18.

We evaluated the assay—which we name stratification of adverse 
pathology (STRAT-AP) because of its ability to risk-stratify patients 
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on the basis of surgical adverse pathology features—as a personal-
ized tool for the prediction of a patient’s risk of locally aggressive 
(invasive or metastatic) cancer. Specifically, we derived predictive 
risk scores for individual patients from over 300 molecular and cel-
lular phenotypic primary and aggregate biomarkers (Supplementary 
Tables 2 and 3). The scores were derived and selected on the basis of 
the ability to predict true indolent disease or latent or occult aggres-
sive disease with metastatic potential from a pathologically defined 
low-risk biopsy. The predictive scores are the general adverse pathol-
ogy potential (GAPP) for assessing the risk of any adverse pathol-
ogy, the local adverse pathology potential (LAPP) for assessing local 
tumour extension, and the metastatic adverse pathology poten-
tial (MAPP) for assessing the risk of metastatic disease (Table 1).  
The GAPP, LAPP and MAPP scores generated by STRAT-AP 
showed strong performance at individual and group levels, validat-
ing the performance of the assay for the risk stratification of prostate 
cancer and breast cancer patients.

Results
Overview of the assay. A successful risk stratification test needs 
to mitigate the complexities of tumour heterogeneity and of the 
tumour microenvironment, and be able to predict post-surgical 
adverse pathologies. STRAT-AP includes five distinct components: a 
defined extracellular-matrix formulation designed for primary-cell 

adhesion, survival and for the measurement of relevant biomarkers19 
(Supplementary Methods), a suite of dynamic and static molecu-
lar and cellular phenotypic biomarkers (Supplementary Methods), 
a microfluidic device for high-throughput live-cell and fixed-cell 
imaging (Methods and Supplementary Methods), machine-vision 
software to objectively measure biomarkers (Supplementary 
Methods) and machine-learning algorithms (Supplementary 
Methods) to generate clinically relevant scores that predict post-
surgery adverse pathology states related to the local growth and 
metastatic behaviour of single, tumour-derived, primary biopsied 
cells19–23, and ultimately to the patient tumour samples.

Figure 1a provides an overview of the STRAT-AP assay  
and summarizes its main components. The assay has been designed 
as a clinically relevant and actionable laboratory-developed  
test24. Sample-handling and rapid-culturing conditions were 
established to develop, from tumour samples, single-cell suspen-
sions and short-term cell cultures (<​72 h) enriched with epithe-
lial cells19 (see Methods). Cells derived from patient biopsies  
were placed on an ECMf-coated microfluidic device (Fig. 1a)  
and imaged using a standard high-throughput format (Fig. 1a; see 
Methods). More than 70% of the primary live-biopsy cells sur-
vived during transport, and more than 80% of those cells adhered  
and spread within the ECMf-coated imaging chamber of the 
microfluidic device19.
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Fig. 1 | Workflow for the risk stratification of patients via surgical adverse-pathology features using the live-primary-cell phenotypic-biomarker assay 
(STRAT-AP) and patient-sample characteristics of the clinical study. a, Post-radical prostatectomy or mastectomy or lumpectomy biopsy cores were 
taken from tumour lesions at clinical collaborator sites. Cores were shipped overnight on cold packs to the central processing laboratory, and enzymatically 
dissociated. Cells were then cultured to normalize to in vitro conditions. Cells were imaged for a suite of phenotypic biomarkers via automated live-cell and 
fixed-cell microscopy on a microfluidic device. Images were analysed by machine-vision algorithms (processes in the orange shaded box are automated). 
The resulting data were objectively analysed by machine-learning statistical algorithms. b, Distribution of samples on the basis of Gleason score:  
7−​ (Gleason 3+​4) and 7+​ (Gleason 4+​3) samples (percentages of each Gleason score in the sample population are noted). The prostate sample set used 
in this study is representative of the naturally occurring distribution of Gleason scores found in the US population, according to initial biopsy reports.  
c, Grade distribution for the breast sample set. d, DCIS and LCIS distribution of the breast sample set. *Four samples were positive for DCIS yet did not 
have LCIS data reported. **Three samples were negative for DCIS yet did not have LCIS data reported. Image of microscope reproduced with permission 
from ZEISS Microscopy. 
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The characteristics of the patient population for the samples 
used in the validation of the STRAT-AP platform are detailed in  
Fig. 1b–d. The specific post-surgical adverse pathology features 
(pathologies) for each patient after radical prostatectomy or 
breast lumpectomy and mastectomy were determined by patholo-
gists located at the site of surgery and blinded to the predictions  
(see Methods).

Biomarker quantification and generation of aggregate biomark-
ers. Oncoproteins localize in focal adhesions (FAs) in two-dimen-
sional environments regulate cytoskeletal and signalling dynamics, 
and are implicated in the genesis and ontogeny of tumour cells21–23. 
We thus hypothesized that a biomarker suite that focuses on FAs 
and cytoskeletal cancer markers could be used in the STRAT-AP 
assay. Cell-spreading velocity (CSV; Fig. 2d), tortuosity (Fig. 2f), 
mean square grey value (MSGV; used as a measure of cell height 
and adhesion; Fig. 2g) and actin retrograde flow velocity (RFV) 
measured by membrane fluctuations at the cell leading edge  
(Fig. 2b,h) cumulatively represent dynamic live-cell, label-free bio-
markers quantified during its live-cell imaging.

On completion of the live-cell imaging protocol, primary biopsy-
derived single-cell cultures were fixed and stained with antibodies to 
measure static biomarkers, such as protein localization, cytoskeletal 
architecture and protein activation (Fig. 2c). Because FAs harbour 
proteins implicated in both prostate and breast tumorigenesis—for 
example, integrin-linked kinase (ILK), FA kinase (FAK; ref. 25), and 
breast cancer anti-oestrogen resistance protein 1 (BCAR1) or pro-
tein product p130Cas—mean FA number (FA-N; Fig. 2I), mean FA 
intensity (FA-I) and mean FA distance (FA-D) were also quantified 
for each cell from the leading membrane edge (Fig. 2k) to assess FA 
activation as well as force generation and motility from the coupling 
of FA and actin. FA measurements are representative of static bio-
markers measured in the fixed-cell imaging regime. We also quanti-
fied cellular-nucleus area (CAN; Fig. 2l), a traditionally important 
histological feature, from measurements of dynamic live single cells 
interacting with the ECMf.

Before biomarker quantification, each single cell from a sample 
was assigned a unique identification number in order to track indi-
vidual cells over the course of the live-cell and fixed-cell imaging 
sequences (Fig. 3a). Molecular and cellular phenotypic biomarkers, 
selected for their potential predictive power, such as FA-N (Fig. 2j), 
CSV and tortuosity (measurement of the curves in the cell surface) 
were quantified (Fig. 2d,f) to indirectly measure FA activity, actin 
cytoskeletal activation and myosin activation, respectively, by using 
fluorescent and differential interference contrast (DIC) microscopy 
in concert with machine-vision software. Additionally, MSGV via 
DIC illumination was quantified to assess cell height, adhesion and 
the cytoskeletal activation necessary for cell spreading (Fig. 2g).  

Similarly, RFV was measured by membrane fluctuations at the cell 
leading edge (Fig. 2b,h) to assess the extent of FA–actin coupling 
as its levels have been correlated with the downstream signalling 
important for survival, growth and motility23. Cell-migration veloc-
ity, cell area and cell perimeter were also measured over time. RFV 
of the cellular membrane was monitored by the creation of kymo-
graphs, which were scored for slope of the membrane above back-
ground. From the slope, we derived the velocity of the membrane 
flow. Each FA measurement was monitored by identifying the  
highest greyscale values around the perimeter of the cell membrane 
above background, and then by scoring them for total size on an 
individual FA. Antibody control images for prostate and breast  
cancer primary cells and cell lines are shown in Supplementary  
Figs. 6 and 7.

Importantly, from the quantification of both dynamic and 
static biomarkers for individual cells, aggregate biomarkers can be 
generated for each cell (Fig. 2m–o and Supplementary Table 3).  
Supplementary Fig. 1 shows the quantification of primary and 
aggregate biomarkers for breast cancer. Aggregate biomarkers were 
calculated to garner insights into relationships, cooperative or 
antagonistic, between ensembles of signalling pathways or between 
subcellular protein–protein interaction networks (Fig. 2m–o). By 
assigning each cell an individual number, live-cell cellular biomark-
ers and fixed-cell molecular and cellular biomarkers18 could be mea-
sured on the same cell and then integrated into the GAPP, LAPP 
and MAPP scores (Table 1).

Determination of adverse pathology states. After a suite of both 
primary and aggregate single-cell biomarkers have been quanti-
fied by machine vision and mathematical processing, the machine-
learning algorithms integrate biomarker values to generate both 
cell-level and patient-level predictive scores for individual adverse 
pathological features (Fig. 3). Single-cell analyses from heteroge-
neous tumour tissue samples require additional mathematical 
transformations to translate single-cell-level biomarker measure-
ments for the prediction of patient-level adverse pathology. To 
achieve this, we used ~5,000 images of live single cells per patient 
sample over 26 time points (Fig. 3a) to obtain longitudinal bio-
marker data (live-cell imaging regime). Live-cell imaging is accom-
plished using label-free DIC to image cell-edge and cell-membrane 
contours and dynamics. Importantly, no antibodies or probes were 
used in the live-cell imaging regime, to ensure minimal perturba-
tion of primary-cell behaviour. STRAT-AP then records a 27th 
image of the same ~5,000 single cells after cells have been fixed and 
stained with relevant antibodies for four FA-associated proteins 
(fixed-cell imaging regime). When quantifying fluorescence from 
antibodies in the fixed-cell imaging regime, the local background 
(immediately adjacent area outside the cell) is subtracted from each 
individual cell.

Primary biomarkers from the tracked single cells throughout 
both the live-cell and fixed-cell imaging regimes were tabulated 
for each individual cell (Fig. 3a). Aggregate biomarker quantities 
derived from functions of primary biomarkers are then calculated 
on the basis of mathematical functions26 (Supplementary Table 3) 
such that both primary and aggregate biomarker quantifications 
can be input to a machine-learning algorithm (see Methods and 
Supplementary Methods) to generate a plot that predicts if a spe-
cific cell exhibits a biomarker profile indicative of having positive or 
negative potential for a given adverse pathology (Fig. 3b).

The machine-learning algorithm was trained on 70% of the 
single cells from the entire patient population to derive statistical 
algorithms that were then tested on the remaining 30% of patient 
cells in a blinded fashion (see Methods). The resulting cell-level 
predictions were synthesized into patient-level predictions on the 
basis of the percentage of cells that were predicted to be positive or 
negative (Fig. 3c).

Table 1 | Machine-learning-derived GAPP, LAPP and MAPP 
clinical scores

GAPP LAPP MAPP

Prostate Any of the 
six adverse 
pathologies  
(SVI, PSM, EPE, 
PNI, LNP, LVI)

Seminal vesicle 
invasion (SVI) 
Positive surgical 
margins (PSM)

Perineural 
invasion (PNI) 
Lymph node 
positive (LNP)

Extra prostatic 
extension (EPE)

Lympho-vascular 
invasion (LVI)

Breast Any of the 
four adverse 
pathologies  
(ENE, PSM, LVI, LI)

Extranodal 
extension (ENE)

Lympho-vascular 
invasion (LVI)

Positive surgical 
margins (PSM)

Lymph invasion 
(LI)
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Prediction of post-surgical adverse pathology features and patient-
risk stratification. The machine-learning model was designed to 
maximize both sensitivity and specificity, and to ensure an optimal 
level of detection of true positives and true negatives while minimiz-
ing false-positive and false-negative predictions. Figure 4a,c,e–g,i,k 
displays output predictions for adverse-pathology features of indi-
vidual prostate cancer patients: positive surgical margins (PSMs), 

seminal vesical invasion (SVI), extra-prostatic extension (EPE), peri-
neural invasion (PNI), lympho-vascular invasion (LVI) and lymph-
node positive (LNP). These plots separate each patient’s cells into 
positive (above the determined threshold value) or negative (below 
the threshold value) for a given adverse-pathology feature.

To identify positive cells and subsequently positive patients, 
STRAT-AP undertakes the following process (Supplementary  

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

Mean focal
adhesion

distance (nm)

Mean nuclear
area/cell area

(µm2)

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

Mean focal
adhesion

number (×10)
Mean focal
adhesion

intensity (a.u.)

N
um

be
r 

of
 c

el
ls

(×
10

0)

Mean retrograde flow
velocity (nm s–1)

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

Mean
tortuosity (a.u.)

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

N
um

be
r 

of
 c

el
ls

(×
1,

00
0)

Mean spreading
velocity

(×105 nm h–1)

Mean grey
scale value
(×104 a.u.)

Mean migration
velocity

(×104 nm h–1)

Quantification of live-cell biomarkers

Quantification of fixed-cell biomarkers

0 min 9 min 18 min

27 min 36 min 45 min

a d e

f g

h

i j

k l

×4
0 

im
ag

e
en

la
rg

ed
×4

0 
im

ag
e

Protein
 subcellular
localization

(pFAK)

Cell
cytoskeleton

(microtubules)

Protein
activation

(ILK)

DIC cell
morphology

N
um

be
r 

of
 c

el
ls

 (
×1

00
)

Aggregate biomarker
fx(cell area, MGSV, RFV,

tortuosity) (a.u.)

n

N
um

be
r 

of
 c

el
ls

 (
×1

00
)

Aggregate biomarker
fx(FA, RFV) (a.u.)

m

N
um

be
r 

of
 c

el
ls

 (
×1

00
)

Aggregate biomarker
fx(migration velocity,

tortuosity) (a.u.)

o
10 µm

10 µm

c

b
T

im
e 

(s
) Distance (nm)

10 µm

Quantification of aggregate biomarkers

2.0 3.5
25

8
7
6
5
4
3
2
1
0

0 10 20

0
0

5

10

15

20

25

5 10 2015

20

15

10

5

0
0 5 10 15 20

3.0
2.5
2.0
1.5
1.0
0.5
0.0

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

0 1 2 3 4 5 6

1 2 3 4 5 1 2 3 4 5

1.5

1.0

0.5

0.0

2.0
2.5

1.5
1.0
0.5
0.0

5.0

2.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0
2.5

1.5
1.0
0.5
0.0

0 1 2 3 4 5

1 2 3 4

6 7 8

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0 2 4 6 8 10 12 14 16 18 20

0.
01

0

0.
0

0.
2

0.
4 0.

6
0.

8
1.

0

0.
01

5
0.

02
0

0.
02

5

Fig. 2 | Phenotypic (cellular and molecular) biomarkers measured via sequential live-cell imaging and fixed-cell imaging in a standardized microfluidic 
environment. a–h, Representative live-cell biomarkers include cell spreading (a) and tortuosity, cell adhesion rate to the device substrate, cell area change 
during adhesion, and tortuosity of cell membrane as a measure of morphology. Rapid dynamics of the membrane surface are measured as retrograde 
flow through kymographs (b). The yellow lines indicate examples of where the retrograde flow measurements are made. The expression, localization and 
phosphorylation state of subcellular protein complexes (phospho-focal adhesion kinase, pFAK) and individual proteins (integrin-linked kinase, ILK) as 
well as microtubules are measured on corresponding fixed cells and matched to respective live-cell images (c). Quantification of the total cell population 
for mean cell-spreading velocity (d), mean cell-migration velocity (e), mean cell tortuosity (f), mean greyscale value (g) and mean actin-retrograde-flow 
velocity (h). i–l, Representative fixed-cell biomarkers are mean cell FA (i), mean cell FA intensity (j), mean cell FA distance from the membrane edge 
(k) and mean cell nuclear area/cell area (l). m–o, LAPP4 =​ f(FA, RFV) aggregate biomarker (m), MAPP10 =​ f(Area, MGSV, RFV, Tortuosity) aggregate 
biomarker (n), MAPP17 =​ f(Migration velocity, Tortuosity) aggregate biomarker (o).
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Fig. 7). Primary biomarkers are first measured and quantified using 
machine-vision software. Primary biomarkers are then input into 
algorithms that generate aggregate biomarkers. Both primary and 

aggregate biomarkers are input into a machine-learning decision 
tree. Having been trained on 70% of the cells across the patient pop-
ulation, the decision tree sets an optimal threshold value to deter-
mine if a cell is positive or negative for a given group of specific 
adverse-pathology features. Then a second threshold value is estab-
lished to decide how many cells need to be positive to accurately 
predict if a patient is positive for a specific set of adverse-pathology 
features. Those thresholds are then applied to the remaining 30% of 
cells in a blinded fashion to generate predictions on patient adverse 
pathology, and the performance of those predictions is assessed 
after unblinding the pathology data. Importantly, the thresholds are 
set by the decision tree, with no operator input (see Methods).

Figure 4b,d,f,h,j,l displays predictions for individual adverse-
pathology features of prostate cancer patients. Briefly, patient-
level predictions are a function of the number of single cells that 
STRAT-AP determines to be positive or negative for any given 
adverse-pathology state (see Methods). Supplementary Fig. 2 shows 
that the transformation from cell-based to patient-based predictions 
for prostate cancer samples is also applicable to breast cancer. The 
predictions were then compared with the surgical pathology reports 
to calculate true positives, false positives, true negatives and false 
negatives. Finally, the full data set was analysed by the machine-
learning algorithm (random-forest classifier), and the outcome 
compared with the results from the validation process to determine 
the robustness of the developed algorithm. The sensitivities and 
specificities were calculated for each adverse-pathologic category. 
Receiver operating characteristic (ROC) curves were generated and 
the associated area under the curve (AUC) calculated to verify the 
accuracy and discrimination ability of the classification algorithm.

The sensitivities and specificities of the patient-based predictions 
were calculated to determine the performance of the STRAT-AP 
algorithms in predicting adverse pathology after radical prostatec-
tomy (Table 2). For the prediction of individual adverse pathology 
features, AUCs were greater than 0.80 (Fig. 5a–f). We also per-
formed a similar analysis for the predictions of post-surgery adverse 
pathology in breast cancer (Fig. 5g–n).

The calculated GAPP, LAPP and MAPP scores (defined for both 
prostate cancer and breast cancer in Table 1) for the risk stratifica-
tion of patients were predicted with AUCs >​ 0.80 (Fig. 6a–c,e–g). 
With LAPP, MAPP and individual predictor values, risk stratifi-
cation plots can be generated (Fig. 6d,h) to separate prostate and 
breast DCIS cancer patients on the basis of the number and type 
of adverse-pathology states and metastatic potential. Importantly, 
the machine-learning predictions were robust and reproducible. 
Training the algorithm with bigger sample sizes should increase 
the AUC values for risk stratification. ROC curves show that  
GAPP, LAPP and MAPP scores derived from quantified biomark-
ers were able to predict adverse pathologies with high sensitiv-
ity and specificity (>​0.80) and to separate or stratify patients into  
distinct, quantifiable groups on the basis of predicted surgical 
adverse-pathology features.

Discussion
The ability to predict adverse pathology before radical prostatec-
tomy in low-risk, indolent prostate cancer (Gleason 6 and Gleason 
3+​4) and before lumpectomy or mastectomy in DCIS breast can-
cer would significantly improve the risk stratification of patients. 
Immunohistochemistry-based nomograms and molecular and 
genomic approaches have been developed to address the need for 
precise diagnoses and risk stratification in prostate cancers and 
breast cancers. There are multiple tests for prostate cancer and 
breast cancer risk stratification, including molecular and genomic 
testing, imaging (MRI) and risk nomograms27–34. However, they  
all have limited application, clinical actionability and performance 
(in particular, low sensitivity or specificity in the prediction of  
post-surgical adverse-pathological features). By way of example, 
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Fig. 3 | Quantification of automated machine-vision biomarkers informs 
random-forest decision trees for the stratification of single cells and 
the prediction of surgical pathology features. a, Live-cell images were 
collected on approximately 5,000 cells across 26 time points. Cells were 
fixed and stained and a 27th image was taken. Each cell was assigned 
a unique identifier and measured for respective live-cell and fixed-cell 
cellular and molecular phenotypic biomarkers, leading to an average of 42 
million measurements per sample. These measurements were consolidated 
across time points to ~328 measurements per cell. The set of biomarkers 
measured for each cell were fed to a statistical-analysis algorithm that 
generates multiple decision trees to stratify negative cells and positive cells 
for a given pathological outcome. Decision trees were weighted to optimize 
algorithm accuracy. b, Characterization of individual normal and potiential 
cancer cells. A representative plot showing the stratification of negative 
cells and positive cells through combinations of biomarkers determined by 
random-forest decision tree analysis. Patient-level results were obtained 
by summarizing the cell-level results. c, Stratification and prediction of 
whether patients are positive or negative for surgical adverse pathological 
features of interest. A representative plot shows the stratification of 
patients for a given predicted pathology feature. Dashed ovals in b show 
groups of cells predicted as true positives and true negatives for LAPP, 
and correspond to the circled patient-level predictions in c. Dashed lines 
indicate the machine-learning-derived thresholds for the discrimination of 
negative (−​) and positive (+​) cells (b) and patients (c).

Nature Biomedical Engineering | www.nature.com/natbiomedeng

http://www.nature.com/natbiomedeng


Articles NaTure BIomedIcal EngIneerIng

standard histopathological methods for prostate cancer—the 
Gleason score—have AUCs of 0.60–0.70 (ref. 35) when predicting 
clinical outcomes for low-risk and intermediate-risk patients. This 
level of predictive performance of the Gleason scoring system has 
led to notable over-diagnosis and over-treatment of prostate cancer 
patients36. By enabling predictive-performance levels closer to an 
AUC of 0.90 when used in conjunction with the Gleason score, the 
STRAT-AP assay has the potential to dramatically improve the abil-
ity to predict if a low-risk or intermediate-risk cancer will progress 
to an aggressive cancer or remain non-aggressive or indolent. This 
performance level will enable additional and more personalized risk 
stratification than the Gleason score.

The STRAT-AP assay was developed to analyse live cells instead 
of fixed tissue. Importantly, STRAT-AP uses a significant body of 
meaningful and previously inaccessible phenotypic biomarkers, and 
overcomes the limitations of bulk, formalin-fixed, paraffin-embed-
ded tissue sample analysis and of static pre-selected biomarkers 

characteristic of existing histopathological and genomic risk strati-
fication tests. The approach taken by the STRAT-AP assay is backed 
by evidence in several cancers that deregulation of key signalling 
pathways (for example, PI3K, FAK, Rho-ROCK and MAPK) is 
responsible for disease-relevant molecular and cellular phenotypes, 
including changes in cytoskeletal dynamics, migration velocity  
and membrane fluctuations37,38, which are central to tumorigenesis 
and metastasis.

The rationale for biomarker selection is based on the observa-
tions that numerous proteins involved in oncogenesis localize to 
focal adhesion sites and that actin polymerization is physically 
and biochemically coupled to FA sites when cells are cultured in 
2D in vitro environments23. For example, localization and activa-
tion of the FAK protein has been implicated in multiple epithelial 
cancers23. Similarly, GTPase-mediated actin polymerization, as 
measured by actin retrograde-flow velocity, has also been impli-
cated in metastatic progression of epithelial cancers. Furthermore, 
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as oncogenesis is linked with FA formation and stabilization as  
well as with enhanced actin polymerization events in 2D in vitro 
environments23, STRAT-AP’s biomarkers were selected to measure 
FA and actin-activation states. A list of STRAT-AP’s biomark-
ers and their relative importance is presented and discussed in 
Supplementary Tables 2–5. The high performance of STRAT-AP 
can be attributed to the use of live cells to measure dynamic bio-
markers with single-cell resolution objectively through machine-
vision algorithms. Additionally, machine-learning algorithms 
objectively rank and maximize the predictive value of a diverse 
set of phenotypic live-cell and fixed-cell biomarkers. STRAT-AP 
was also designed to be easily and seamlessly integrated into the  
clinical workflow. Such a workflow would involve the following 
steps. Physicians simply place a biopsy in a tube pre-filled with 
transport medium instead of a tube filled with formalin (as they 
would in current clinical workflows). Similarly, that tube is sent 
to the pathology laboratory and placed in a box containing ice 
packs and shipped overnight to a central laboratory. The sample 
is stable for up to 72 h at 4 °C, thus allowing time for transport. 
In the central laboratory, the sample is removed and placed in a 
dissociation buffer and allowed to normalize to the ECMf before 
the single-cell suspension is seeded on a microfluidic device for 
imaging. Image acquisition and data analysis are automated, and 
patient scores (GAPP, LAPP and MAPP) are ready to be returned 
back to the physician within 72 h. Because the GAPP score predicts 
whether the patient is experiencing any adverse pathology, it is a 
simple to interpret whether a patient has low-risk indolent disease 
or low-risk aggressive disease. The LAPP and MAPP scores pro-
vide further information about whether the patient is experiencing  
local or metastatic adverse pathology, guiding the clinician through 
personalized treatment options for the patient (Fig. 6d,h). With 
automated microscopy and machine vision, STRAT-AP is user-
friendly for both the clinician ordering the test and the techni-

cian conducting the test, and provides clinically useful prediction  
metrics (Table 2).

The concept of live-cell phenotypic biomarkers is not unprec-
edented. High-throughput, live-cell imaging of cellular pheno-
typic biomarkers has been used to screen for drug responses39, but 
has not been used to risk-stratify patients by predicting adverse 
pathologies, as the timelines of previous methods are too long to 
be relevant to treatment guidance. In addition, methods that are 
unable to culture patient samples to measure and analyse relevant 
phenotypic biomarkers would be ineffective. Therefore, STRAT-AP 
fills an important gap in current treatment planning, as it allows for 
personalized risk assessments to guide treatment. Also, STRAT-AP 
is a clinically applicable test with single-cell resolution using  
live-primary-cell phenomics—rapid analysis of the behaviour 
of live primary biopsied cells via dynamic molecular and cellular  
biomarkers18,19,22,23,26.

The machine-vision software for image analysis in STRAT-AP 
was developed to objectively measure biomarkers in individual live 
cells across space and time to achieve the necessary spatiotempo-
ral resolution to overcome the challenges of tumour heterogeneity. 
The combination of automated live-cell imaging microscopy and 
machine-vision software allows for molecular and cellular pheno-
typic biomarkers to be objectively measured on individual cells. 
The ECMf was designed not just to keep cells alive in vitro, but to 
provide a reproducible reference microenvironment to compare 
single-cell behaviour and quantify biomarkers, and is not consid-
ered to represent a complete recapitulation of native ECM in vivo. A 
powerful feature of the STRAT-AP assay is its use of machine learn-
ing to generate predictions on both individual adverse-pathology 
features and aggregate groupings of biologically related pathology 
features. The machine-learning algorithm, which uses ~300 indi-
vidual and aggregate biomarker inputs, provides cell-level and 
patient-level tissue scores. The GAPP, LAPP and MAPP scores  

Table 2 | Predictive performance results for adverse pathologies from prostate tissue and breast tissue samples

Predicted adverse pathology Sensitivity Specificity AUC N True 
positive

True  
negative

Predicted 
positive

Predicted 
negative

Prostate tissue
Seminal vesicle invasion 0.89 0.96 0.93 57 9 48 8 46

Positive surgical margin 0.99 0.93 0.94 59 18 41 18 38

Extra-prostatic extension 0.95 0.97 0.96 53 21 32 20 31

Perineural invasion 0.99 0.99 0.99 50 37 13 37 13

Lymph node positive 0.95 0.96 0.81 47 4 43 4 41

Lymph vascular invasion 0.99 0.98 0.98 54 6 48 6 47

GAPP 0.91 0.93 0.88 59 45 14 41 13

LAPP 0.93 0.90 0.93 59 28 31 26 28

MAPP 0.95 0.84 0.89 59 40 19 38 16

Breast tissue
Extra-nodal extension 0.99 0.73 0.84 37 14 23 13 19

Positive surgical margin 0.99 0.95 0.98 45 3 42 3 39

Lympho-vascular invasion 0.90 0.87 0.87 44 21 23 19 19

Lymph invasion 0.96 0.79 0.91 46 27 19 20 18

GAPP* 0.81 0.93 0.85 47 32 15 26 14

LAPP* 0.99 0.72 0.81 47 15 32 15 23

MAPP* 0.84 0.88 0.85 47 31 16 26 14

MAPPLI** 0.90 0.85 0.83 32 19 13 15 12

MAPPLVI** 0.83 0.87 0.86 32 18 14 15 12

Sensitivity, specificity, AUC, total number of samples, true-positive and true-negative numbers, and number of samples predicted positive or negative were obtained from machine-learning-derived 
statistical algorithms. *For breast samples, GAPP, LAPP and MAPP scores are derived from algorithms trained on all breast samples. **For breast samples, MAPPLI and MAPPLVI scores are derived from 
algorithms trained on DCIS positive samples only.
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generated by the machine-learning algorithms differentiate cell 
populations and cancer patients with low-grade and intermediate-
grade disease and tumour behaviour. The scores predict adverse 
pathologic findings in surgical specimens (Fig. 5 and Table 2), 
upgrading the Gleason score, and biochemical recurrence in pros-
tate cancer (Supplementary Figs. 3 and 4). GAPP predicts both 
overall tumour aggressiveness and metastatic potential, with high 
sensitivity and specificity for prostate cancer and breast cancer  
(Fig. 6a,e and Table 2). LAPP predicts positive surgical margins, 
seminal vesicle invasion and extra-prostatic extension for prostate 
cancer, and extra-nodal extension and positive surgical margins for 
breast cancer, also with high sensitivity and specificity (Fig. 6b,f and 
Table 2). Moreover, pathological findings such as DCIS can be inde-
pendently predicted, to then predict subsets of GAPP, LAPP and 
MAPP scores so that DCIS patients can be effectively stratified on 
the basis of the potential of their respective DCIS lesions to aggres-
sively grow locally or distally (Fig. 6h and Table 2). MAPP predicts 
PNI, LVI and LNP disease for prostate cancer, and LVI and LI in 
breast cancer, again with high sensitivity and specificity (Fig. 5g 

and Table 2). Each of these adverse pathologies has implications for 
individual and personalized patient prognosis.

The STRAT-AP assay supplements both the traditional forma-
lin-fixed paraffin-embedded tissue-scoring systems used in prostate 
and breast cancer as well as recently introduced genomic tests, and 
improves tumour risk assessment and treatment decisions with-
out interrupting the current oncological and pathological work-
flows. Using live-cell phenotypic-biomarker measurements from 
individual cells directly encompasses cellular heterogeneity40 and 
single-cell behaviour such as cell–ECM interactions, cytoskeletal 
and signalling dynamics, subcellular protein localization, protein 
modification, functional protein-complex formation, membrane 
fluctuations and motility parameters implicated in cancer aggres-
siveness and metastasis41. Furthermore, STRAT-AP as a live-pri-
mary-cell assay could be applied as a companion diagnostic tool for 
personalized therapy selection and, by making it into an automated 
high-throughput system, as a biomarker and lead-compound dis-
covery tool. Although this validation study with prostate cancer and 
breast cancer shows the versatility and performance of the assay, 
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further risk stratification validation studies in these and other solid 
tumours are warranted.

Methods
Study design. Annually, over one million men undergo prostate biopsies and over 
one million women undergo breast biopsies in the United States1. Using these 
numbers as a guide, we developed a clinical validation study for the STRAT-AP 
assay. The study involves growing the sample size in two stages: from 60 (stage I) to 
300 (stage II) biopsies. These numbers were determined mathematically using the 
following equation: 

= + = × × −N
P P

z
W

(sN) TP FN 1 SN(1 SN)2
2

where N is the required study size for assumed sensitivity, sN is the sensitivity, 
and TP and FN the true-positive and false-negative probabilities. P is the 
percentage of the total population that has the characteristic of interest, W =​ 0.05 
is the confidence interval, and Z =​ 1.96 is the z score for the desired confidence 
interval42–44. All 59 prostate tissue samples and 47 breast tissue samples were 
de-identified and collected under Institutional Review Board (IRB) approval at the 
following institutions: Lahey Hospital and Medical Center, Department of Cancer 
Research, American Medical Professionals of New York, Urology Place of  
San Antonio and the National Cancer Institute Cooperative Human Tissue 
Network (CHTN). All procedures performed in the studies involving human 
participants were carried out in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or with comparable ethical standards. 
Inclusion and exclusions were determined as follows. The conditions for the 

inclusion of prostate cancer samples were male patients from 40 to 80 years of age; 
all races; the patient is willing to participate and has signed the written informed-
consent form; patients with Gleason score 6, 7,8, 9 or 10; patients undergoing 
radical prostatectomy; patients with known clinical outcomes. The conditions for 
the exclusion of prostate cancer samples were patients that have received prior 
chemotherapy and patients that have tested positive for infectious blood-borne 
pathogens. The conditions for the inclusion of breast cancer samples were female 
patients from 40 to 90 years of age; all races; the patient is willing to participate 
and has signed the written informed-consent form; basal-cell and squamous-
cell malignancies of the skin may be included. The conditions for the inclusion 
of breast cancer samples were non-treated patients (without previous hormonal 
therapy, chemotherapy or radiotherapy before surgery); pre-menopausal and 
post-menopausal women; patient primary treatment plan is surgery (lumpectomy 
or mastectomy); patients diagnosed with metastatic cancer or other malignancy 
apart from basal cell and squamous cell. The conditions for the exclusion of breast 
cancer samples were patients diagnosed with positive infectious disease such as 
HIV/AIDs, hepatitis or syphilis; patients with known breast disease undergoing 
treatment for the disease; pregnant or lactating women. Consenting patients that 
met inclusion and exclusion criteria were selected by clinical collaborators. Patient 
samples were randomized, and the investigators were blind to patient selection and 
surgical pathological data before testing the performance of the machine-learning 
algorithm. Following biomarker data analysis, surgical–pathology findings were 
unblinded, and the predictive power and statistics of STRAT-AP were assessed  
and validated.

Pathology. The specific data collected from the pathology reports were Gleason 
primary and secondary pattern and score, tumour stage, percentage of tumour 
involvement, SVI, PSMs, EPE, LVI, PNI, pelvic lymph-node involvement and 
biochemical recurrence. Typically, aggressive prostate cancer presents with one, or 
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several, of the following six specific adverse pathologies: (1) SVI, (2) PSMs,  
(3) EPE, (4) LVI, (5) PNI and (6) LNP6. In breast cancer, patients typically present 
with one, or several, of the following specific adverse pathologies: (1) ENE, (2) 
PSMs, (3) H/NP, (4) DCIS, (5) LCIS, (6) LVI and (7) LI.

Tissue handling and culture of primary prostate cells. Cold-chain or 
temperature-controlled transport ensured that fresh samples from surgical 
specimens could be maintained alive while being sent to the central laboratory 
facility. Samples were collected from areas of suspected tumour on the basis of pre-
surgery biopsy data, collected in transport medium supplemented with purified 
extracellular protein factors to support cell and tissue survival in suspension 
and with Dulbecco’s modified Eagle’s medium (DMEM)22, and shipped from 
the hospital site to the core laboratory overnight at 4 °C. The transport medium 
used for the transportation of tissue samples from the operating room to the 
central laboratory was developed by Cellanyx (cat. nos. TM-PR001 (prostate) and 
TM-BR001 (breast)). Albeit with less cell-survival efficiency, DMEM can also 
be used to transport samples. Transport time can be up to 72 h (to maintain the 
viability of cells19) (Supplementary Fig. 11). On arrival at the laboratory, samples 
were mechanically disrupted and then treated with collagenase in Cellanyx’s 
dissociation medium supplemented with Lonza prostate epithelial basal medium 
(PrEBM). After overnight digestion, samples were resuspended in fresh culturing 
medium free of collagenase, and seeded on tissue-culture plates coated with 
ECMf19(Supplementary Fig. 10). Dissociation medium used to dissociate tissue 
samples into single-cell suspensions was developed by Cellanyx (cat. nos. DM-
PR001 (prostate) and DM-BR001 (breast)). Alternatively, DMEM supplemented 
with 10 μ​g ml−1 collagenase I (Millipore Sigma, cat. no. 9001-12-1) can also be 
used to dissociate the cells (Supplementary Methods). Cells were allowed to 
acclimate to the culture conditions for 24 h before image analysis. Specifically, a 
collagen-type-I/ECMf19 was used to coat culturing substrates containing Cellanyx’s 
culturing medium (cat. nos. CM-PR001 (prostate) and CM-BR001 (breast)). ECMf 
was designed to support cell adhesion and survival as well as to create a reference 
environment for measuring cellular and molecular phenotypic biomarkers under 
well-defined, robust and reproducible conditions. Cells were removed from culture 
plates via standard trypsin treatment, and an average of 5,000 cells were seeded on 
a given microfluidic device for image analysis. Alternatively, laminin may also be 
used as a protein coating to promote adhesion and survival, albeit less efficiently, 
as the engagement of pro-growth integrins facilitates the adhesion and survival of 
primary biopsy cells in 2D culture systems. Culturing medium used for in vitro 
culturing of primary biopsy cells was developed by Cellanyx (cat. nos. CM-PR001 
(prostate) and CM-BR001 (breast)). DMEM supplemented with 10 mM glutamine 
(Life Technologies) may also be used as the medium for culturing primary cells in 
vitro (Supplementary Methods).

A biopsy core sample typically contains a variety of cell types, such as epithelial 
cells (luminal and apical), fibroblasts, mesenchymal cells, immune cells and 
endothelial cells45,46. The ECMf and media formulations select for epithelial cells 
(~70%, Supplementary Fig. 5) while maintaining stromal cells (~15%) and other 
cell types (~15%) in the population.

Integration into clinical workflows and platform–operator interface. Designed 
as a laboratory-developed test (LDT), STRAT-AP can fit seamlessly into an on-site 
pathology laboratory or a centralized laboratory. Its key elements, as with any LDT, 
are its process and equipment. STRAT-AP uses media, reagents and disposables 
that are cost-effective (<​$100 per sample) and easily managed with traditional 
culturing techniques. Furthermore, the assay uses a commercially available 
microscope to acquire images that are digitized using standard imaging software 
and analysed by custom machine-vision software. Once biomarker measurements 
are quantified by the software, the values are input into machine-learning 
algorithms that return the predictive GAPP, LAPP and MAAP scores. Image 
acquisition is currently automated, and other processes such as cell dissociation 
and antibody staining for the fixed-cell imaging regime can also be automated.

ECM and cell-response tests. Freshly dissociated primary prostate samples and 
breast samples were distributed evenly among the three substrate-coated wells. 
After 24 h of incubation at 37 °C and 5% CO2, substrate wells were washed of 
loose cells and cellular debris. Wells were imaged and percentage of confluence 
calculated. For growth curves of cells on varied substrates, 15,000 cells were seeded 
per condition, and the cells were incubated at 37 °C and 5% CO2. Images were 
collected at 24 h intervals for three days.

Microfluidic device. A microfluidic device was developed as a high-throughput, 
standardized, cell-measurement environment (Supplementary Fig. 9). The 
microfluidic device consisted of luer-lock inlet and outlet ports for automated 
cell loading and fluid exchange. The imaging chamber could be modulated to 
accommodate one or more substrates for exposing cells to multiple environments, 
thus increasing the total possible biomarkers measured. The physical dimensions 
of the device are similar to those of a standard microscope slide. The microfluidic 
device acts as a self-contained environmental chamber that standardizes biomarker 
measurements as the biopsied cells interact with the ECMf-coated glass surface and 
culturing medium. After live-cell imaging, cells were fixed with paraformaldehyde 

and stained with antibodies on the microfluidic device, enabling the live-cell 
biomarkers to be coordinated with the fixed-cell biomarkers, given cell location 
cataloguing. Cell viability was measured by adhesion and cell spreading on the 
microfluidic device. Viability levels were greater than >​98% for the duration of 
live-cell culturing (2 h) on the device. Alternative glass-bottom imaging methods 
may be used with less high-throughput capabilities given that the fluid exchange of 
media, and of fixative and antibody solutions, may not be automated.

Cell imaging. STRAT-AP relies on the label-free evaluation of dynamic live-cell 
phenotypic biomarkers, followed by the antibody-labelled evaluation of static 
molecular phenotypic biomarkers in fixed cells (Fig. 2 and Supplementary Figs. 
1, 3 and 5). Live-cell imaging was carried out for 2 h after cells were seeded onto 
the microfluidic device in order to observe adhesion dynamics, cell spreading and 
early cell-motility events. During this time, cell location was tracked and stored 
to correlate it with cell location after fixation. Cells were imaged using label-free 
DIC microscopy, and visible membrane features such as adhesion cell-nucleus size, 
membrane ruffling and motility were quantified. Cells were then permeabilized, 
fixed and stained with antibodies to probe for protein localization and 
modification state. During live-cell imaging, cells were tracked and their location 
stored via automated software. After fixation, cells were imaged and biomarkers 
from tracked live cells were merged, for each corresponding cell. All images were 
captured using a Nikon TE-2000 system and Nikon Elements software with a 
Nikon CFI Plan Apo Lambda ×​20, 0.75 numerical aperture, 1.0 mm working-
distance DIC objective (MRD00205) and exposure time of 100 ms for live-cell 
imaging, and a Nikon CFI Plan Fluor ×​40, 0.75 numerical aperture Eco glass 
objective (MRH00401), exposure times of 500 ms and Nikon filter sets, C-FL GFP 
HC HISN zero shift filter set (96362), C-FL Texas Red HC HISN zero shift filter set 
(96365), C-FL CY5 HC HISN zero shift filter set (96366) for fluorescence imaging. 
All image analyses were performed using custom Matlab software (Mathworks), 
as described in Supplementary Methods and ref. 26. Cells were identified using a 
combination of centre of mass and greyscale values. The custom machine-vision 
software for performing biomarker quantification was developed by Cellanyx 
(cat. nos. SS-MV-PR001 (prostate analysis) and SS-MV-BR001 (breast analysis)). 
Machine-vision software may also be built with the open-source software ImageJ.

Immunofluorescence. Cells were fixed using 4% paraformaldehyde (Thermo 
Fisher Scientific product no. FB002) for 20 min and permeabilized using 0.1% 
Triton X-100 (Millipore Sigma cat. no. T8787). Cells were treated with mouse 
phosphorylated FA kinase (pFAK) antibody (BD Transduction Labs, product 
no. 611806) for active FA staining, rabbit integrin linked kinase (ILK) antibody 
(Abcam product no. ab74336) and rat α​-tubulin antibody (Thermo Fisher 
Scientific product no. MA1-80189). Secondary Alexa-Fluor 488 anti-mouse 
(Thermo Fisher Scientific Probes product no. A11029), Alexa-Fluor 647 anti-rabbit 
(Thermo Fisher Scientific Probes product no. A21245) and Alexa-Fluor 594 anti-
rat antibodies (Thermo Fisher Scientific product no. A11007) were used to stain 
the pFAK, ILK and α​-tubulin primary antibodies, respectively. Supplementary  
Figs. 6 and 7 display staining controls in primary cancer cells and cancer  
cell lines, respectively.

Statistical analyses. Custom machine-learning software (Supplementary 
Fig. 8) to generate thresholds and predictive clinical scores was developed by 
Cellanyx (cat. nos. SS-ML-PR001 (prostate analysis) and SS-ML-BR001 (breast 
analysis)). Machine-learning algorithms may also be built with MatLab software 
(Mathworks). The algorithms are based on random-forest decision trees47. Random 
forests are trained collections of decision trees with random selection to average 
outcomes or predictions. Individual random-forest-based algorithms are used for 
each specific prediction. For example, a specific adverse pathology (for example, 
SVI) or specific grouping of adverse pathologies (for example, LAPP) is predicted 
by a unique random-forest algorithm. The variance is reduced by averaging the 
ensemble of prediction with the advantage of keeping bias low from decision trees. 
Individual cells were analysed thereafter. The whole population of analysed cells 
was used to develop a sample score. On the basis of ROC curve analysis, decision 
thresholds (positive or negative for a given prediction) were set to maximize 
both sensitivity and specificity. The sensitivity and specificity of the assay were 
determined by comparing the algorithm-generated predictions with post-surgical 
pathology reports.

The following procedure was used to develop the machine-learning algorithm 
to predict and classify a specific adverse pathology (Supplementary Fig. 8). 
A random-forest classifier is a meta-estimator that uses multiple and distinct 
subsamples of a data set to fit a number of decision trees using randomly selected 
subsets of the biomarkers and end points, and that then uses averaging to improve 
the predictive accuracy of the machine-learning algorithms48,49. Because it uses 
random selection and averaging, over-fitting is controlled for. The performance 
reported is based on the predictions of the blinded validation data set. The 70% 
subsample was used in conjunction with the post-surgery pathology reports 
associated with each sample for the development of the ‘learned’ classification 
algorithm. Each objectively quantified biomarker was input into the machine-
learning algorithms, which evaluate mathematical permutations of biomarkers 
along with individual biomarker scores to output the predictive GAPP, LAPP and 
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MAPP scores40. The machine-learning algorithms were implemented using custom 
Matlab software26.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The machine-vision and machine-learning MATLAB codes are 
available upon request from the corresponding author.

Data availability
All data supporting the findings of this study are available within the paper and its 
Supplementary Information. Anonymized biomarker quantifications are available 
upon request from the corresponding author.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Custom machine-vision software was developed using MatLab. The software is available upon request.

Data analysis Machine-learning software was developed using MatLab. The software is available upon request. Image-acquisition software and 
automated microscope stage control were controlled via Nikon-Elements AR advanced software, version 2013. Some microscope image 
analysis was performed via ImageJ 1.49v (National institutes of Health, USA).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The authors declare that all data supporting the findings of this study are available within the paper and its supplementary information. Anonymised biomarker 
quantifications are available upon request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen to achieve analytical validation with 95% CI assuming a population of 1 million biopsies in the United States per 
year.  

Data exclusions No data were excluded.

Replication All experiments were conducted in a manner that produced clean replicates. All attempts at replication were successful.

Randomization Samples were randomly collected from various sites and processed in order of receipt.

Blinding All test sample sets were blind during the data analysis and prediction phases. Performance statistics were validated by a third independent 
party.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials All materials are readily available from the authors or from commercial sources.

Antibodies
Antibodies used pFAK mouse anti human FAK (pY397) (BD Transduction Labs Prod# 611806):  

Lot# 7345905 
Clone  18/FAK (pY397)  (RUO) Brand 
BD Transduction Laboratories™ 
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Alternative Name 
Focal Adhesion Kinase (pY397) 
Concentration 
250 μg/ml 
Isotype 
Mouse IgG1 
Reactivity 
 
Ilk rabbit antibody (Abcam Prod# ab74336): 
Lot# GR250295; Product name Anti-Integrin linked ILK antibody Description Rabbit polyclonal to Integrin linked ILK  
1:100 dilution 
 
Alexa Fluor 488 goat anti-mouse IgG (H+L) (Life Technologies/Molecular Probes Prod# A11029): 
Lot# 1942237  
1:500 
 
Alexa Fluor 647 goat anti-rabbit IgG (H+L) (Life Technologies/Molecular Probes Prod# A21245): 
Lot# 1981173 
1:500 
 
alpha Tubulin rat antibody (Thermo Scientific Prod # MA1-80189): 
Lot# TF2579906 
1:500  
 
Alexa Fluor 594 goat anti-rat IgG (H+L) (Life Technologies/Molecular Probes Prod# A11007): 
Lot# 1903506 
1:500 
 
All antibodies were validated by the companies the antibodies were purchased from, and conditions were chosen for optimal 
signal and imaging.

Validation Antibodies were validated by the manufacturer and confirmed in human cancer cell lines, as displayed in the Supplementary 
Information. 
 
pFAK: 
Reactivity 
Human (QC Testing)  
Application 
Western blot (Routinely Tested)  
Bioimaging (Tested During Development)  
Immunogen 
Human FAK (pY397) 
Storage Buffer 
Aqueous buffered solution containing BSA, glycerol, and ≤0.09% sodium azide. 
 
Ilk:  
Host species Rabbit Tested applications Suitable for: WB, IP, ICC/IF Species reactivity Reacts with: Mouse, Human Predicted to 
work with: Rat, Sheep, Rabbit, Horse, Chicken, Guinea pig, Cow, Dog, Pig, Chimpanzee, Zebrafish, Rhesus monkey, Gorilla, Tilapia, 
Orangutan, Medaka fish Immunogen Synthetic peptide corresponding to a region between residues 402 and 451 of human 
Integrin linked ILK (NP_004508.1) Positive control HeLa, 293T and NIH3T3 whole cell lysates. Form Liquid Storage instructions 
Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles. Storage buffer Preservative: 0.09% Sodium 
Azide Constituents: 0.1% BSA, Tris buffered saline Purity Immunogen affinity purified Purification notes ab74336 was affinity 
purified using an epitope specific to Integrin linked ILK immobilized on solid support. Clonality Polyclonal Isotype IgG Product 
datasheet Anti-Integrin linked ILK antibody ab74336 Overview Properties Applications from manufacturer guarantee covers the 
use of ab74336 in the following tested applications. The application notes include recommended starting dilutions; optimal 
dilutions/concentrations should be determined by the end user. 1 Function Receptor-proximal protein kinase regulating integrin-
mediated signal transduction. May act as a mediator of inside-out integrin signaling. Focal adhesion protein part of the complex 
ILK-PINCH. This complex is considered to be one of the convergence points of integrin- and growth factor signaling pathway. 
Could be implicated in mediating cell architecture, adhesion to integrin substrates and anchorage-dependent growth in epithelial 
cells. Phosphorylates beta-1 and beta3 integrin subunit on serine and threonine residues, but also AKT1 and GSK3B. Tissue 
specificity Highly expressed in heart followed by skeletal muscle, pancreas and kidney. Weakly expressed in placenta, lung and 
liver. Sequence similarities Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family. Contains 5 ANK repeats. 
Contains 1 protein kinase domain. Domain A PH-like domain is involved in phosphatidylinositol phosphate binding. Post-
translational modifications Autophosphorylated on serine residues. Cellular localization Cell junction > focal adhesion. Cell 
membrane. Application Abreviews Notes WB 1/2000 - 1/10000. Predicted molecular weight: 51 kDa. IP Use at 2-5 μg/mg of 
lysate. ICC/IF Use a concentration of 1 μg/ml. Target Images Immunocytochemistry/ Immunofluorescence - AntiIntegrin linked 
ILK antibody (ab74336) Immunocytochemistry/Immunofluorescence analysis of acetone-fixed asynchronous HeLa cells labelling 
Integrin linked ILK with ab74336 at 1/100 (2μg/ml). A red-fluorescent goat antirabbit IgG (1/100) was used as the secondary 
antibody. 2 Western blot - Anti-Integrin linked ILK antibody (ab74336) All lanes : Anti-Integrin linked ILK antibody (ab74336) at 
0.04 μg/ml Lane 1 : HeLa whole cell lysate at 50 μg Lane 2 : HeLa whole cell lysate at 15 μg Lane 3 : HeLa whole cell lysate at 5 μg 
Lane 4 : 293T whole cell lysate at 50 μg Lane 5 : NIH3T3 whole cell lysate at 50 μg Developed using the ECL technique. Predicted 
band size: 51 kDa Observed band size: 51 kDa Exposure time: 10 seconds Immunoprecipitation - Anti-Integrin linked ILK antibody 
(ab74336) Detection of Integrin linked ILK by Western Blot of Immunprecipitate. ab74336 at 1μg/ml staining Integrin linked ILK in 
HeLa whole cell lysate immunoprecipitated using ab74336 at 3μg/mg lysate (1 mg/IP; 20% of IP loaded/lane). Detection: 
Chemiluminescence with exposure time of 10 seconds. Immunocytochemistry/ Immunofluorescence - AntiIntegrin linked ILK 
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antibody (ab74336) ICC/IF image of ab74336 stained MCF7 cells. The cells were 100% methanol fixed (5 min) and then incubated 
in 1%BSA / 10% normal goat serum / 0.3M glycine in 0.1% PBSTween for 1h to permeabilise the cells and block non-specific 
protein-protein interactions. The cells were then incubated with the antibody (ab74336, 1μg/ml) overnight at +4°C. The 
secondary antibody (green) was Alexa Fluor® 488 goat anti-rabbit IgG (H+L) used at a 1/1000 dilution for 1h. ab74336 has been 
referenced in at least 1 publication. 
• Lin F  et al. Echistatin prevents posterior capsule opacification in diabetic rabbit model via integrin linked kinase signaling 
pathway. Int J Clin Exp Pathol 8:14294-304 (2015). 
 
 
Alexa Fluor 488 goat anti-mouse IgG (H+L) (Life Technologies/Molecular Probes Prod# A11029) wwas validated by manufacturer 
and referenced in the following publications:  
 
Nature communications 
The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled 
circuitries. 
"A11029 was used in immunohistochemistry to examine whether p140Cap protein levels in ERBB2-amplified breast cancer 
patients correlate with survival" 
Authors Grasso S,Chapelle J,Salemme V,Aramu S,Russo I,Vitale N,Verdun di Cantogno L,Dallaglio K,Castellano I,Amici A,Centonze 
G,Sharma N,Lunardi S,Cabodi S,Cavallo F,Lamolinara A,Stramucci L,Moiso E,Provero P,Albini A,Sapino A,Staaf J,Di Fiore 
PP,Bertalot G,Pece S,Tosoni D,Confalonieri S,Iezzi M,Di Stefano P,Turco E,Defilippi P 
Dilution 
1:200 
Year2017 
 
Reproductive biomedicine online 
Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation 
mouse embryo development. 
"A-11029 was used in immunohistochemistry to demonstrate that Rock regulates Hippo signaling and ensures the correct 
subcellular localization Amot in outer cells" 
Authors Mihajlović AI,Bruce AW 
Dilution 
1:500 
Year2016 
 
PloS one 
Expansion of the gateway multisite recombination cloning toolkit. 
"A-11029 was used in immunohistochemistry to expand the Gateway MultiSite cloning system" 
Authors Shearin HK,Dvarishkis AR,Kozeluh CD,Stowers RS 
Dilution 
1:500 
Year2014 
 
PloS one 
Cerebral cell renewal in adult mice controls the onset of obesity. 
"A-11029 was used in immunohistochemistry to elucidate the onset of obesity in mice controlled by cerebral cell renewal" 
Authors Gouazé A,Brenachot X,Rigault C,Krezymon A,Rauch C,Nédélec E,Lemoine A,Gascuel J,Bauer S,Pénicaud L,Benani A 
 
 
Alexa Fluor 647 goat anti-rabbit IgG (H+L) (Life Technologies/Molecular Probes Prod# A21245)  was validated by manufacturer 
and referenced in the following publications:   
 
Frontiers in neuroanatomy 
Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse 
Barrel Cortex. 
"A21245 was used in immunohistochemistry to determine the consequences of vasoactive intestinal polypeptide-positive 
neuron dendrites in the vertical orientation" 
Authors Sohn J,Okamoto S,Kataoka N,Kaneko T,Nakamura K,Hioki H 
Dilution 
5 g/l 
Year2017 
 
PloS one 
A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the 
Tet-Off System. 
"A21245 was used in immunohistochemistry to generate a single adeno-associated virus vector Tet-Off platform, adeno-
associated virus-SynTetOff, to improve the gene-transduction efficiency, specifically in neurons" 
Authors Sohn J,Takahashi M,Okamoto S,Ishida Y,Furuta T,Hioki H 
Dilution 
5 μg/ml 
Year2017 
 
PloS one 
Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures. 
"A21245 was used in immunohistochemistry to model the effects of blast traumatic brain injury in a rat hippocampal in vitro 
system" 
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Authors Miller AP,Shah AS,Aperi BV,Kurpad SN,Stemper BD,Glavaski-Joksimovic A 
Dilution 
1:750 
Year2017 
 
Nature 
Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. 
"A-21245 was used in immunohistochemistry to assess the control for risky decision-making and signal for prior outcomes due to 
nucleus accumbens D2R cells signals" 
Authors Zalocusky KA,Ramakrishnan C,Lerner TN,Davidson TJ,Knutson B,Deisseroth K 
Dilution 
1:200 
Year2016 
 
Autophagy 
Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. 
"A-21245 was used in immunohistochemistry to study the Atg17/FIP200 complex that localizes to perilysosomal Ref(2)P 
aggregates and activates Atg1 in Drosophila that promotes autophagy" 
Authors Nagy P,Kárpáti M,Varga A,Pircs K,Venkei Z,Takáts S,Varga K,Erdi B,Hegedűs K,Juhász G 
 
alpha Tubulin rat antibody (Thermo Scientific Prod # MA1-80189) was validated by manufacturer and referenced in the following 
publication: 
 
PLoS Genet. 2012;8(4):e1002661. doi: 10.1371/journal.pgen.1002661. Epub 2012 Apr 19. 
A coordinated interdependent protein circuitry stabilizes the kinetochore ensemble to protect CENP-A in the human pathogenic 
yeast Candida albicans. 
Thakur J1, Sanyal K. 
 
 
Alexa Fluor 594 goat anti-rat IgG (H+L) (Life Technologies/Molecular Probes Prod# A11007) was validated by manufacturer and 
referenced in the following publications: 
 
Frontiers in physiology 
Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE-/- Mice. 
"A11007 was used in immunohistochemistry to test both peripheral and central effects of exercise training combined with a 
cholesterol-rich diet in old ApoE knockout mice" 
Authors Di Cataldo V,Géloën A,Langlois JB,Chauveau F,Thézé B,Hubert V,Wiart M,Chirico EN,Rieusset J,Vidal H,Pialoux V,Canet-
Soulas E 
Dilution 
1:1000 
Year2017 
 
Nature communications 
DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. 
"A11007 was used in immunohistochemistry to find DEK is crucial to the development of arthritis and a potential therapy target" 
Authors Mor-Vaknin N,Saha A,Legendre M,Carmona-Rivera C,Amin MA,Rabquer BJ,Gonzales-Hernandez MJ,Jorns J,Mohan 
S,Yalavarthi S,Pai DA,Angevine K,Almburg SJ,Knight JS,Adams BS,Koch AE,Fox DA,Engelke DR,Kaplan MJ,Markovitz DM 
Dilution 
1:200 
Year2017 
 
Journal of neuroinflammation 
Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after 
ischemic stroke in mice. 
"A-11007 was used in immunohistochemistry to test if IL-1beta and TNF-alpha are synthesized by overlapping or segregated 
populations of cells after ischemic stroke in mice" 
Authors Clausen BH,Lambertsen KL,Babcock AA,Holm TH,Dagnaes-Hansen F,Finsen B 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Cell lines were procured from American Type Culture Collection (ATCC).

Authentication Authentication of cell types were performed by ATCC.

Mycoplasma contamination All cell lines were negative for Mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.
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Human research participants
Policy information about studies involving human research participants

Population characteristics All patients in the study consented to have their samples used in the study, under IRB approval. 
 
For prostate samples the following inclusion criteria were used: male, all races, 40-80 years old, patients with a Gleason score of 
6–10, patients with know clinical outcomes, patients not receiving chemotherapy for cancer. 
 
For breast samples the following inclusion criteria were used: male or female of all races, ages 40-75, scheduled for a 
mastectomy or lumpectomy,  patients with know clinical outcomes, patients not receiving chemotherapy for cancer.

Recruitment No self-selection criteria bias for patient populations is anticipated as all patients that underwent surgery were analyzed and only 
post-surgical adverse pathologies were predicted. 
 
All procedures performed in the studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or with 
comparable ethical standards. 
 
Inclusion and exclusions were determined as follows. The conditions for the inclusions for of prostate-cancer samples include 
were: male patients from 40 to 80 years of age, all races, the patient is willing to participate and has signed the written 
informed-consent form, patients with Gleason score 6, 7,8, 9 or 10+, patients undergoing radical prostatectomy, and patients 
with known clinical outcomes. The conditions for the exclusions for of prostate-cancer samples include were: patients that have 
received prior chemotherapy, and patients that have tested positive for infectious blood-borne pathogens. 
 
The conditions for the inclusions for of breast-cancer samples were: Female patients from 40 years to 90 years of age, all races, 
the patient is willing to participate and has signed the written informed-consent form, and basal-cell and squamous-cell 
malignancies of the skin may be included. The conditions for the inclusions for of breast-cancer samples were: non-treated 
patients (without previous hormonal therapy, chemotherapy, or radiotherapy prior to surgery), pre-menopausal and post-
menopausal women, patient primary treatment plan is surgery (lumpectomy or mastectomy), and patients diagnosed with 
metastatic cancer or other malignancy apart from basal cell and squamous cell. The conditions for the exclusions for of breast-
cancer samples were: patients diagnosed with positive infectious disease such as HIV/AIDs, hepatitis, or syphilis, patients with 
known breast disease undergoing treatment for the disease, and pregnant or lactating women. Consenting patients that met 
inclusion and exclusion criteria were selected by clinical collaborators. Patient samples were randomized, and the investigators 
were blind to patient selection and surgical pathological data prior to testing the performance of the machine-learning 
algorithm. Following biomarker data analysis, surgical-pathology findings were un-blinded, and the predictive power and 
statistics of STRAT-AP were assessed and validated.
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